Sandesh Adhikary

Education

2019–Present	PhD Student , <i>Computer Science and Eng.</i> , <i>University of Washington (GPA: 3.89)</i> .
2017-2019	PhD Student , Computational Science and Eng., Georgia Tech (GPA: 4.0). Transferred to UW .
2011–2015	Bachelors of Arts, <i>Physics, Reed College (GPA: 3.65)</i> , Honors: Phi Beta Kappa, Academic Commendation (2012, 2013, 2015).
	Research
2022-Present	Geometric Representations for Reinforcement Learning
	Developing reinforcement learning algorithms that exploit geometric structures in decision processes. Most recently, improved performance of behavioral-distance based reinforcement learning algorithms through locality-preserving Laplacian eigenmaps.
In Review	Adhikary, S., Li, Anqi., and Boots, B., (2024). BeigeMaps: Behavioral Eigenmaps for Reinforcement Learning from Images. In Review at the International Conference for Machine Learning (ICML)
Extended Abstract	Adhikary, S. and Boots, B., (2022). Modular Policy Composition with Policy Centroids. Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM)
2021-2022	Geometry-Aware Sampling with Kernel Herding
	Extended the kernel herding algorithm to the task of drawing samples from probabil- ity distributions over data-spaces corresponding to various structured Riemannian manifolds routinely encountered in robotics.
Selected Publications	Adhikary, S. and Boots, B., (2022). Sampling over Riemannian Manifolds with Kernel Herding. IEEE International Conference on Robotics and Automation (ICRA) Honors: Best Paper, R:SS (2021) Workshop on Geometry and Topology in Robotics
2019-2021	Quantum-Inspired Probabilistic Modeling
	Established equivalencies between probabilistic models from quantum tensor networks, stochastic processes, and weighted automata. Developed an approach to learning hidden quantum Markov models using their parameterization on the Stiefel manifold.
Selected Publications	Adhikary, S.*, Srinivasan S.*, Miller J., Rabusseau G., & Boots B. (2021) Quantum Tensor Networks, Stochastic Processes, & Weighted Automata. International Conference on Artificial Intelligence and Statistics (AISTATS). Adhikary, S.*, Srinivasan, S.*, Gordon, G. & Boots, B. (2020) Expressiveness and Learning
	of Hidden Quantum Markov Models. International Conference on Artificial Intelligence and Statistics (AISTATS).
2017-2019	Predicting Post-transplant Outcomes in Renal Transplant Patients
	Collaborated with clinical experts to develop machine learning models predicting transplant failures, readmissions, and mortality in renal transplant patients.
Selected Publications	Hogan, J., Arenson, M. D., Adhikary, S. , et al. (2019). Assessing Predictors of Early and Late Hospital Readmission After Kidney Transplantation. Transplantation Direct 5(8)

Teaching

Oct 2020–Dec 2020Teaching Assistant CSE599: Reinforcement Learning, University of WashingtonDec 2018–May 2019Teaching Assistant CS4002: Robots and Society, Georgia Tech.Aug 2017–Dec 2017Teaching Assistant CS4001: Computing, Society, and Ethics, Georgia Tech.

Skills

Domains Machine Learning, Reinforcement Learning, Probabilistic Modeling Programming Python, PyTorch, R